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Abstract

Body fluids such as urine potentially contain a wealth of information pertaining to age, sex, social and reproductive status,
physiologic state, and genotype of the donor. To explore whether urine could encode information regarding environment,
physiology, and development, we compared the volatile compositions of mouse urine using solid-phase microextraction and
gas chromatography—mass spectrometry (SPME-GC/MS). Specifically, we identified volatile organic compounds (VOCs) in
individual urine samples taken from inbred C57BL/6J-H-2° mice under several experimental conditions—maturation state, diet,
stress, and diurnal rhythms, designed to mimic natural variations. Approximately 1000 peaks (i.e., variables) were identified per
comparison and of these many were identified as potential differential biomarkers. Consistent with previous findings, we
found groups of compounds that vary significantly and consistently rather than a single unique compound to provide a robust
signature. We identified over 49 new predictive compounds, in addition to identifying several published compounds, for
maturation state, diet, stress, and time-of-day. We found a considerable degree of overlap in the chemicals identified as
(potential) biomarkers for each comparison. Chemometric methods indicate that the strong group-related patterns in VOCs
provide sufficient information to identify several parameters of natural variations in this strain of mice including their
maturation state, stress level, and diet.

Key words: age, diet, solid-phase microextraction and gas chromatography—mass spectrometry, stress, urine, volatile organic
compound

Introduction

Body fluids contain vast amounts of information that correlates
with health, gender, age, stress level, and social status (Singer
et al. 1997; Novotny 2003; Osada et al. 2003; Rock et al. 2006;
Rock et al. 2007; Xu et al. 2007). Metabolic profiles of biolog-
ical fluids have reflected differences in endocrine state, age, and
genetic makeup of the donors (Rhodes et al. 1981; Holland
et al. 1984; Singer et al. 1997; Bollard et al. 2001; Osada

et al. 2003; Willse et al. 2005; Rock et al. 2006; Novotny
et al. 2007). Moreover, these profiles are perturbed by disease-
induced aberrations and thus provide the potential inter-
pretation of differences between normal and pathological
physiologic processes. For example, patients with diabetes mel-
litus display large differences in urinary volatile metabolites
(Rhodes et al. 1981; Hollywood et al. 2006). Urinary profiling
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thus has the potential to lead to the discovery of novel disease
linkages (Miyashita and Robinson 1980; Rhodes et al. 1981).

Urine, an excreted body fluid, is readily available and eas-
ily collected using noninvasive methods. Urine is rich in
chemical information and is a potent source of pheromones
and/or semiochemicals that play a significant role in repro-
duction and social interaction in rodents and other mammals
(Singer 1991; Kayali-Sayadi et al. 2003; Burger 2006). Urine
contains several thousands of components (Bollard et al.
2001) and at least 100 volatile compounds have been chem-
ically identified in mouse urine. These volatile urinary com-
pounds represent nearly all common chemical classes,
including aldehydes, alcohols, ketones, esters, ethers, aro-
matics, and acids. Previous assays employed to understand
these emitted chemical signals involve fractionation and/or
targeting of specific components that in effect reduces the
collective power of the emitted signal (metabolome).

We have utilized a global analysis approach to profile low
molecular mass volatile and semivolatile (<290 Da) organic
constituents in urine with a uniform experimental protocol.
This approach to studying global urinary profiles in a system
(i.e., organism) under a given set of conditions is particularly
challenging (Rochfort 2005). These challenges include the
wide range of abundances of volatile organic compounds
(VOCs) within a single sample, diversity of chemical struc-
tures that are necessary to detect, the continuous nature of
the data sets (information from a single compound is spread
across many scans and may overlap/blend in with adjacent
compounds) produced and the interdependence of individual
VOC’s. VOC profiling studies, using methodology borrowed
from other global “omic’ studies and new analysis methods,
have the potential to link metabolites with their respective
metabolic pathways and establish relationships with protein
and gene expression levels.

In this study, we employed urine profiling methods to de-
termine whether and how environmental, physiological, and
developmental information is coded in the chemical signals
present in urine. We generated mouse urinary profiles under
conditions mimicking natural variations. The enormous vol-
ume of data generated and its multidimensional aspects re-
quired the use of novel predictive modeling methods
(Brereton 2007, 2009; Dixon et al. 2007; Wongravee et al.
2009). Using these methods, we show strong group-related
patterns in VOCs suggesting that there is enough informa-
tion in these metabolites to code for the natural variations
that mice experience. These chemometric methods permitted
utilization of the full urinary profile for robust biomarker
discovery. Specifically, we describe differences due to matu-
ration state, diet, stress level, and diurnal variation to help
further define “normal” urinary constituents. These data
provide a discrete subset of compounds that can be further
examined under additional conditions of environmental ex-
posure and/or disease development. Furthermore, specific
biochemical pathways and subsequent processes for produc-
ing and releasing the VOCs are implicated.

Materials and methods

Mice

Male mice, (C57BL/6J-H-2°), used in these studies were ei-
ther ordered directly from a single vendor, Jackson Labora-
tory, Inc., (diet and stress studies) or generated from breeders
obtained from Jackson Laboratory (maturation and diurnal
rhythm studies) and maintained in the animal facility at
Johns Hopkins University. All mice were housed under uni-
form conditions in the same room, 4 to a cage. Cages had
corncob bedding and were encapsulated with air flowing into
and out of the cage to reduce the odors/viruses/etc. Cages
were changed once every 2 weeks. With the exception of mice
in the diet study, mice were allowed free access to a standard
diet (no. 2018S Harlan Teklad) and water. The animal room
was maintained at 21-22 °C, 70% relative humidity, and
12:12 h light:dark lighting regime, with lights on at 0600 h.

Sample collection

Mouse urine was collected directly into cryogenic vials using
gentle abdominal pressure. A minimum of 50 pL urine from
a single collection was required for our solid-phase micro-
extraction and gas chromatography-mass spectrometry
(SPME-GC/MS) processing. The number of actual samples
collected, processed, and analyzed (stated below) was lower
than the theoretical number of possible samples because the
mice either did not provide any urine sample or not enough
to meet the 50 uL minimum criteria. After collection, vials
were immediately capped and stored at —80 °C for up to
24 months. The animal handling procedures were approved
by the Animal Care and Use Committee at the Johns
Hopkins University.

Maturation state and diurnal rhythm studies

All animals derived from a common breeder population ob-
tained from Jackson Laboratories. Urine was gathered from
2 panels of 10 mice every 4 weeks as they aged, beginning
with 4 weeks and ending with 30 weeks. Urine was sampled
for 5 days at an age point, both in the morning and in the late
afternoon roughly 6 h apart (10 possible collections total per
mouse per age point) resulted in 384 samples; the breakdown
of the samples analyzed is as follows: 4 week (n = 48), 8 week
(n = 144), AM (n = 93), and PM (n = 99).

Stress study

Urine was collected from 10 stressed and 10 control mice at
8-10 weeks of age. To introduce stress (Schaefer et al. 2000),
2 pieces of screen cut approximately to 15 x 15 cm and sta-
pled around 3 edges was used to restrain individuals from the
group of 10 mice for 30 min on 10 separate occasions. A
mouse was placed in the screen enclosure and secured with
binder clips. Urine was collected 90 min after onset of stress
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restraint. These samples were collected over the course of 2
weeks and resulted in 67 stress and 63 stress control samples.

Diet study

Urine was collected from 10 altered diet and 10 normal diet
mice at 10-12 weeks of age. Altered diet mice were fed a high-
fat diet for 2 weeks prior to urine collection and continued to
be fed this diet until urine collection was complete. The stan-
dard diet fed to mice in the age, diurnal rhythm, and stress
studies contains 18.2% protein and 5.8% fat by weight; the
altered diet was composed of the same ingredients with the
exception that it had additional cocoa butter, making it
16.4% protein and 15.3% fat by weight (Harlen Teklad).
Urine was collected over a 2-week period on 10 separate days,
totaling 10 possible separate urine collections per mouse
(resulting in 59 altered diet and 60 control diet samples).

Sample preparation

To enhance volatile extraction from mouse urine, sodium
chloride was added to headspace vials prior to the addition
of urine. Two-milliliter crimp-cap top glass headspace vials
(Supelco) were filled with 450 puL. 25% sodium chloride (J.T.
Baker, ACS Reagent) in distilled de-ionized water. Mouse
urine was thawed and 50 pL of urine from individual mice
(urine collections were not pooled) was then transferred into
the prepared headspace vials. The vials were immediately
sealed with magnetic crimp caps containing gastight silicon
/polytetrafluoroethylene septum (Supelco). In general, vials
were run on the GC/MS within 48 h of preparation. Controls
were routinely run for air and stock NaCl solution.

Data generation using SPME-GC/MS

SPME of the headspace in vials containing mouse urine was
performed with divinylbenzene/carboxen/polydimethylsilox-
ane 50/30 um I-cm-long metal fibers (Supelco) and Merlin
microseals (Supelco). Fibers were preconditioned according
to manufacturer recommendations. Sampling was accom-
plished using an automated headspace sampler (MPS2,
Gerstel) connected to a GC/MS (6890/5973N, Agilent) out-
fitted with ChemStation D.01.02. Vials were placed onto
a Peltier storage cooler held at 4 °C in order of analysis. Sam-
ples were randomized between time of collection, age groups,
and individual mice. SPME fibers were replaced as needed,
usually after running between 70 and 100 samples. The head-
space sampling protocol was as follows: vial equilibration,
65 °C (2 min); extraction, 65 °C (35 min) with low-level ag-
itation; desorption in inlet, 250 °C (2 min); 15 min bakeout of
fiber in bakeout station. An SPME liner was used and
changed as necessary (0.75 mm inner diameter [i.d.], Supel-
co0). The GC column used was a DB-WAX column (0.25 mm
1.d. X 30 m x 0.25 um film thickness; Agilent Technologies).
GC oven profile was as follows: 60 °C held for 2 min, ramped
to 230 °C at 5.0 °C/min, and hold for 9 min. Helium was used
as the carrier gas with a flow rate of 2 mL/min. The MS
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scanned from 41 to 400 m/z with a threshold of 10. The
MS quad temperature was set to 150 °C and the MS source
temperature to 230 °C.

Standards and chemical identification

Machine variability was monitored by running a VOC cali-
bration standard (Sigma Aldrich) and running a daily DB-
WAX test standard (Agilent Technologies). Chemicals which
were confirmed by matching retention time (RT) and spectra
to known chemical standards run in our laboratory under
identical onditions are indicated in Table 1. The remaining
chemicals were tentatively identified by Chemstation identifi-
cation matches to the National Institute of Standards and
Technology (NIST) database because the majority of chem-
icals in this group are not commercially available and include:
6-hydroxy-6-methyl-3-heptanone  (HMH), dihydrofuran
(DHF), 2-isopropyl-4,5-dihydrothiazole (IPT) and 2-sec-
butyl-4,5-dihydrothiazole (SBT). Compounds that were not
present in the NIST database were tentatively identified on
the basis of comparison of spectra to chemicals reported in
the literature (Licbich et al. 1977; Novotny et al. 1984;
Novotny, Jemiolo, et al. 1999; Novotny, Ma, et al. 1999).

Signal processing and data analysis

Data preprocessing, peak detection, and matching

The methods for data processing and analysis have been de-
scribed in depth (Dixon et al. 2006). For GC/MS experi-
ments, tunable parameters were fixed prior to performing
preprocessing and were selected according to chromatogram
scan rate, average peak width, noise levels, and retention
time drift tolerance. All 3 steps (preprocessing, peak detec-
tion, and matching) were automated, and data were con-
verted to compatible file formats and analyzed using
Matlab and in-house algorithms.

Initial data smoothing and preparation were accomplished
in 3 stages: 1) the mass channels are examined to determine
which contain potential information—an m/z channel
must contain 11 or more nonzero scans to be considered

Table 1 Details of number of samples and peaks for maturation state,
stress, diet, and diurnal rhythm studies

Study Number of samples Number of peaks
Maturation state 4 weeks > 8weeks
44 148 1039
Stress Stressed mice  Control mice
67 63 1056
Diet High fat High fat control
59 60 996
Diurnal rhythms AM PM
93 99 1039
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informative. An m/z channel with 10 or less nonzero scans is
removed; 2) noise factors were calculated to confirm that se-
lected peaks are real and informative; and 3) chromato-
graphic peaks were smoothed using a wavelet filter to
remove additional noise from the chromatograms that inter-
feres with peak detection.

Subsequently, peaks were identified by 1) detection of
peaks in each informative mass channel using the first deriv-
ative of segments along each single ion chromatogram; 2)
peaks were validated by matching a set of predefined criteria
including intensity and width (both minimum and maximum
criteria were used); and 3) the mass channel peaks for the
same compound were grouped—peaks in different mass
channels will sometimes come from the same origin (and
for that reason have similarly shaped peaks); they were
grouped accordingly.

Finally, peak matching or alignment was performed to de-
termine which peaks in different chromatograms correspond
to the same compounds. This phase was also accomplished in
3 stages: 1) candidate target peaks that had sufficiently dif-
ferent retention times and mass spectra from one another to
postulate they have originated from different compounds
were identified; 2) groups of peaks associated with each tar-
get—these peaks found in different chromatograms are pos-
tulated to have the same chemical origin were defined; and 3)
groups of peaks that had similar characteristics over all the
chromatograms were merged. Rare peaks, occurring less
than 5 times across the entire set of mouse samples, were re-
moved as were 124 siloxane peaks that were from the SPME
fiber. The data were used to create a “master peak table”
using all samples from all studies, whose rows consist of
721 chromatograms and columns of 3401 unique com-
pounds. For each study, a “local peak table” was obtained,
consisting of the subset of peaks and samples found in each
study; a further reduction was performed so that only peaks
detected at least 5 times in the local subset of samples were
retained. The number of samples and variables in each study
are listed in Table 1. Further details of this approach are
reported elsewhere (Wongravee et al. 2009). Peak areas
for each peak in the chromatogram were square rooted to
reduce the influence of very intense peaks; a further discus-
sion rationale is discussed elsewhere (Dixon et al. 2007; Xu
et al. 2007). These values were then normalized row scaled
summed to 1 for each chromatogram because the total ab-
solute intensity of each chromatogram could vary for several
reasons and to provide greater reliability than rationing to an
internal reference standard. Finally, each normalized square
root peak area was standardized. This process gave each
peak equal significance in the resultant analysis and does
not assume that an intense peak has a more important influ-
ence over discrimination than a low intensity one. If the
normalization was taken in the first step followed by the
square root, the summation of each chromatogram would
be unequal and incomparable because the normalization
properties are destroyed.

Visualization method: principal components analysis

From Table 1, the data sets showed a very high number of
variables (ca. 1000 variables in each study). Because it is dif-
ficult to visualize and determine the number of significant
factors for data sets with high numbers of variables, data re-
duction was performed. Principal component analysis (PCA)
is an orthogonal linear transformation method, which allows
visualization of data in a new coordinate system where the
first component represents the greatest variance of the data
(principal component 1-PC1), the second greatest variance is
projected to the second coordinate (PC2), and so on. PCA
reduces dimensionality in multivariate data sets to those data
characteristics that contribute most to the overall variance.
PCA loadings identify components (peaks or combinations
of peaks) that have the most influence over the difference be-
tween samples. More detailed information on PCA is dis-
cussed elsewhere (Brereton 2003, 2007). In this paper, we
employed PCA solely for visualization and not modeling
and as such were not concerned by how many components
are significant (unlike for partial least squares [PLS] meth-
ods).

Determining potentially significant markers

Given that there were a large number of factors that influ-
ence the mouse urinary signal, for example, instrumental ef-
fects, analytical methods, environment (bedding etc.), food
eaten, individuality, etc., and it is anticipated that only a very
small number of compounds measured will be markers for
the systematic factors that have been studied, a univariate
method (7-statistic) and 2 multivariate methods based on
PLS, PLS weights (PLSW), and PLS regression coefficients
(PLSRC) (Dixon et al. 2007; Brereton 2009; Wongravee et al.
2009) were used to identify potential discriminatory markers
in the GCMS peak tables. Thus in this manner, we endeav-
ored to discriminate between 2 groups of samples, although
there are alternative approaches such as the Fisher weight
that can be employed when more than 2 groups of samples
are part of the model.

Methods for determining relative significance of variables

t-Statistic

The #-statistic method is a common univariate indicator of
significance of whether a variable differs significantly in
distribution between 2 classes. However, the correlation be-
tween variables is not taken into account during the calcu-
lation. The differences between means of each variable
relative to the pooled standard deviation are used for calcu-
lating the z-statistic. Variables with highest z-statistic values
(extremely positive or negative) are suggested as potential
discriminators for one or either of the classes according to
the sign. Variables can be ranked according to the magnitude
of the t-statistic; however, in this paper, we employed Monte
Carlo permutations as an alternative as described below.
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Partial least squares

PLS method is a common extension of multiple linear regres-
sion (Geladi and Kowalski 1986; Martens and Naes 1989;
Brereton 2000). It is a multivariate data analysis technique
that can be used to relate 2 or more blocks of information
while identifying underlying relationships. PLS discriminant
analysis (PLS-DA) (Stahle and Wold 1987; Barker and
Rayens 2003; Dixon et al. 2007) is an extension to discrim-
ination, where one block contains the analytical data (in our
case the peak table) and another the classifier (in our case
a label +1 or —1 according to class). In the PLS method, it
is necessary to determine the appropriate number of PLS
components in the model and this was determined using
bootstrap (Efron and Tibshirani 1993; Dixon et al. 2007)
for each study. We have found that the bootstrap provides
a stable solution although there are several alternative meth-
ods to determine the number of PLS components such as
cross validation (Stahle and Wold 1987) and permutation
test (Wiklund et al. 2008).

PLS weights

This method used the weight matrix obtained from PLS to
provide a statistical indicator as to which significant varia-
bles are most significant, in our case discrimination between
2 groups. If there was more than one significant component,
the PLSW was calculated by the root mean square of the
weight matrix for each variable over all PLS components
in the model. Therefore, the PLSW were all positive, and
the markers were ranked according to the size of PLSW.

PLS regression coefficients

This was used as an alternative approach for determining
the relative significance of variables. In its simplest form,
the regression model specifies the relationship between an
experimental data matrix and a classifier. PLSRC were cal-
culated by multiplying the weight matrix and the variable
loading matrix obtained from the model. The magnitudes
of the PLSRC were used to determine the relative signifi-
cance of markers. The sign of PLSRC was used to determine
which group the variable was a marker for, like the #-statistic,
but is a multivariate rather than univariate indicator of
significance.

Methods for determining how many variables are
significant

The T-statistic, PLSW, and PLSRC described above were
calculated for all variables in the data set. A simple approach
was used to rank the variables according to the magnitude of
the statistical indicator function. The variable with the high-
est magnitude was ranked number 1 as the best discriminator
for the data set and so on. Whereas this approach can cer-
tainly help determine which variables are most likely to be
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discriminatory it does not necessarily demonstrate that they
are discriminatory for a given data set. As previously shown,
it is possible to generate a completely random data set
(Brereton 2006, 2009), and yet, we can still order variables
according to whether they appear significant or not. Because
of the potential identification of random variables that have
99%  significance, it was important to utilize additional
criteria to identify the significance of the variables. A further
problem is that the most variables are not normally distrib-
uted, so traditional statistical tests, for example, F test or
analysis of variance, that assume normal distributions will
not provide appropriate probabilities. Despite these draw-
backs, statistics such as the ¢-statistic can still be used to
assess the significance of variables providing they are not
converted directly into a probability and other empirical
approaches are employed to assess their significance. In this
paper, we used both the Monte Carlo permutation method
(Xu et al. 2007; Wongravee et al. 2009) and iterative refor-
mulation of training set models (Wongravee et al. 2009) to
determine how many and which variables were significant.

Monte Carlo method

The Monte Carlo permutation method allows us to assign an
empirical probability of significance for each variable. The
method works by randomly permuting the class membership
of the samples and calculating the test statistics using each
random permutation. This procedure was repeated many
times (5000 times for the paper) to obtain a background null
distribution of statistical indicators for each variable. Then,
the values calculated from the data set were compared with
this null distribution to determine their empirical signifi-
cance. In this paper, we set the empirical significance thresh-
old to 99%. If there are 5000 permutations, a threshold of
99% (0.99) represents the value of the indicator with true
class information that exceeds the value from the null permu-
tation 4950 times of 5000. A variable that gives test value
299% significance was suggested as a potential marker. Each
marker had an empirical significance attached to it so that all
markers with of 299% empirical probability were ranked in
order of significance. This procedure was applied to all 3 sta-
tistical indicators (z-statistic, PLSW, and PLSRC) described
in this paper.

Iterative reformulation of training sets

The traditional approach to variable selection is to perform
this on the entire data set (autoprediction) and determine the
significance of a marker compound from its test value. How-
ever, when we test models, we usually split the data into test
and training sets (Brereton 2009), using the training set to
establish the model and the test set to determine how well
the model performs. It can be shown that if variables are se-
lected in autopredictive mode (i.e., on the entire data set in-
cluding both test and training sets; (Brereton 2006) there is
a danger or overfitting. An alternative approach is to select
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potential markers only on the training set. To this end, we
divided the data into test and training sets several times
(100 in this paper), and each time the training set consisted
of a different subset of samples. This reduced the danger of
atypical training sets (e.g., including outliers) and also al-
lowed for an average of several (=100 in this paper) models
for assessment of performance. The difficulty with this ap-
proach is that each subset of data may result in different
markers being selected, if these are chosen using the training
set rather than using autopredictive model. If the data were
random, we would expect wide variability in the markers
chosen; however, if the same compound is selected many
times as a marker for each split in the data, it is to be robust
to the samples included in the training set and so likely to be
a true marker. We call this method “iterative reformulation
of training set models” (Wongravee et al. 2009). We used this
method with the samples in the data set, which were divided
into 2 independent data sets: training set (samples that are
used to form the model) and test set (samples that are used
to assess how good the model is—“validation set”). The test
statistics (z-statistic, PLSW, and PLSRC) were performed on
the training set to rank the variables. In each iteration, the
most significant variables are recorded. In this paper, we re-
port a modification of the previously published work as we
chose the number of variables using Monte Carlo permuta-
tions on the autopredictive data set, at 99% significance level,
so if these permutations resulted in 31 variables being found
to be significant (e.g.), we counted the number of times that
a variable is present in the top 31 in each iteration. The pro-
cedure was repeated 100 times, thus obtaining 100 lists of
significant variables. If a variable was found to be in this list
70 times or more, the variable was suggested to be a real
marker.

Results

VOCs and prediction of maturation state, stress level, diet,
and diurnal rhythms

We compared the volatile compositions of urine using
SPME-GC/MS to determine whether inbred mouse urine
encodes information about the environment, physiology,
and maturity of the animal. Specifically, we identified VOCs
in individual urine samples taken under 4 experimental con-
ditions—maturation state, diet, stress, and diurnal rhythms,
designed to mimic natural variations. Supplementary Figure
1 shows a representative total ion chromatogram from the
VOC profiles of the different experimental conditions that
were performed. GC/MS profiles allowed identification of
new differential compounds in addition to confirming the
identity of previously known chemosignals. Table 1 de-
scribes the number of samples and peaks identified in the
different experimental data sets. The 4 studies identified
between 996 and 1056 unique GC/MS peaks in each

experiment that were subsequently analyzed for distinguish-
ing variables.

Identification of differentiating VOCs

Because visualization of each individual GC/MS data set
(i.e., chromatogram and spectra) to identify unique features
is impractical, chemometric approaches for data mining were
employed to analyze and identify variables that were associ-
ated with the different experiments. An example of a chro-
matogram is shown in Supplementary Figure 1, which is
a representative total ion chromatogram from the different
experimental conditions with labeling of some of the identi-
fied peaks.

In Table 2, we list the number of markers suggested to be
significant using chemometric methods, including PLSW,
PLSRC, and T statistics as described above. In order to de-
termine a subset of variables that have a high significance to
the experimental conditions, we applied Monte Carlo meth-
ods with a threshold of 99% or iterative reformulation of the
training sets with a 70% threshold. The number of times each
candidate marker is found in the 100 iterative reformulation
of training set models is illustrated in Supplementary Figure
2. These frequency plots illustrate that 41 of 79 possible vari-
able counts (over all 3 statistics) are found in at least 99% of
the iterations and only 13 between 70% and 80% of the time.
Visualization of the graphs in Supplementary Figure 2 sug-
gests that a 70% cutoff (after first using the number of var-
iables that have an empirical probability of 99% using Monte
Carlo methods) is a suitable choice—a few variables are
found very occasionally but these are probably due to atyp-
ical selections of training set samples. In order to draw up
a final list of markers, we select only those markers that
are found to be significant using all 3 statistics and both
Monte Carlo and iterative reformulation of training set mod-
els: both approaches select quite similar subsets of variables.
Table 3 lists the variables and the corresponding compound
names to the identified variables meeting the above criteria.
Compounds were either identified using purified chemical
standards as indicated or had tentative identifications that
were of high confidence. As shown in Table 3, the maturation
state comparison modeling results showed significant differ-
ences in 12 urinary components (IPT, 1-(1H-pyrrol-2-yl)
ethanone, SBT, benzyl methyl ketone, 1-(1H-pyrrol-2-yl)
ethanone, DHF 1.64 min (decomposition product of a pher-
omone HMH (at 13.1 min, a very broad peak, not in itself a
differential marker) (Novotny et al. 1999), dimethyl disul-
phide, methylene chloride, DHF 2.60 min, 2-sec-butylthiazole,
p-meth-1-en-8-ol, and 2-acetyl pyrroline; Novotny et al. 1999).
Interestingly, the pheromones 2-heptanone (Novotny et al.
1986), alpha- and beta-farnesene (Novotny et al. 1984)
appeared as initial significant variables but were not part
of the final list of compounds that met the above threshold
conditions. The abundance of 4-methyl phenol was greater
in the older animals, consistent with previous studies
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Table 2 Number of variables deemed to be significant using variable selection

Data set Three methods Two methods One method
T, PLSW, and PLSRC Tand PLSW Tand PLSRC PLSW and PLSRC T PLSW PLSRC
Monte Carlo; 99% empirical probability
Age 11 146 11 11 166 148 11
Stress 15 79 15 17 97 83 17
Diet 7 86 7 7 110 90 7
AM/PM 8 53 9 8 68 57 9
Iterative reformulation of training sets; found in 70% of training sets
Age 5 5 5 5 7 5 5
Stress 10 1M 10 10 11 13 1M
Diet 3 4 4 3 5 4 4
AM/PM 4 5 4 4 5 5 4
T, T-statistic.

(Osada et al. 2003), but failed to appear within our top rank-
ing compounds. Several of the 12 biomarkers were also
shared with the markers identified in subsequent conditions.
Our results suggest that a novel group of previously unrec-
ognized age-differential chemicals benzyl methyl ketone,
1-(1H-pyrrol-2-yl) ethanone, DHF 1.64 min, dimethyl
disulphide, methylene chloride, DHF 2.60 min, 2-sec-
butylthiazole, p-meth-1-en-8-ol, and 2-acetyl pyrroline) along
with previously identified compounds (IPT and SBT)
(Novotny et al. 1984, 1990; Osada et al. 2003) provide a robust
signature of maturation state.

We successfully identified 20 top ranked peaks in our stress
comparison (restraint stress vs. control) (Table 3). The 20
chemicals showing differences are listed here (6-methyl-3-
heptanone, nerolidol, N-phenyl formamide, methyl isobutyl
ketone, SBT, p-menth-1-en-8-ol, linalool, isovaleric acid
coeluting with 2-methyl-butyric acid, 2-heptanone, exo-
brevicomin, benzaldehyde, peak at RT 20.25 min, 1-(1H-
pyrrol-2-yl) ethanone, DHF 2.88 min, trimethylamine as
well as 5 compounds whose structures could not be deter-
mined [ND 3.42, 19.31, 10.41, 16.19, 20.25, and 14.67
min]). SBT has been previously shown to be associated with
aggression in male mice and is considered to be a pheromone
(Novotny et al. 1985). In addition, 2-heptanone has also been
identified as associated with adrenal gland activity in mice
(Novotny et al. 1986). Of the 20 biomarkers, 9 were in com-
mon with at least one of the other 3 comparisons. These re-
sults identify a novel group of hitherto unidentified stress-
differential chemicals in addition to identifying several com-
pounds that have previously been associated with mouse ad-
renal and pheromone activity (Novotny et al. 1986).

A similar analysis in the diet comparison (high fat diet vs.
regular diet) resulted in 8 significantly different VOCs (4,4,5-
trimethyl-2-cyclohexenone, DHF 2.88 min, linalool, 4-
methyl phenol, isoprene, N-phenyl formamide, along with

2 undetermined compounds [ND 7.96 and 6.82 min]). Two
compounds, linalool and 4-methyl phenol were recently
shown to differ significantly in mouse urine of mice on differ-
ent diets and major histocompatibility complex (MHC)
backgrounds (Kwak et al. 2008). Of these 8 biomarkers, 4
were in common with at least one of the other 3 comparisons.
Additional identified and tentatively identified VOCs that
differ in abundance but failed to score within the top 20
biomarkers included 2-methyl-3-buten-2-ol, 4-heptanone,
2-ethyl-6-methyl-pyridine, and N, N-dimethyl urea. We con-
clude that, the diet of an individual can selectively modulate
metabolic functions and generate characteristic patterns of
VOCs.

Maturation, diet, and stress all reflect reasonably long-
term changes in metabolic state. We decided to examine
whether short-term changes, those associated with diurnal
rhythm (AM vs. PM), showed chemical differences. Nine
chemicals differed in abundance with time-of-day (4,4,5-tri-
methyl-2-cyclohexenone, phenol, 2,3-pentanedione, benzyl
methyl ketone, acetophenone, DHF 2.88 min, and trimethyl-
amine along with 2 compounds that were not determined
[ND 20.25 and 10.41 min]) (Table 3). Of the 9 biomarkers,
6 were in common with at least one of the other 3 compar-
isons, and 4 were in common with the stress comparison
(DHF 2.88 min, trimethylamine, and 2 of the undetermined
compounds [ND 20.25 and 10.41]). An additional chemically
identified VOC (N, N-dimethyl urea) differed in abundance
but only appeared in a few samples and failed to rank in the
top 20 biomarkers. These data reveal a novel group of diur-
nal rhythm-differential chemicals provide a time-of-day
signature.

A number of previously identified VOCs were detected
inurine headspace butdid notariseashighly differentiatingcom-
pounds in our analysis. Sulfur-containing compounds, present
in nearly all chromatograms, included tentatively identified
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Table 3 Listing of markers and compounds that were identified by variable selection methods as highly significant

RT (min) Sign Compound Monte Carlo 99% Iterative reformulation of
name empirical significance training set (70% threshold)
Maturation study 8.28 —/+ IPT e
(4 wk/8+ wk)
10.2 —/+ SBT® I 174
16.21 +/— Benzyl methyl ketone® e I
21.42 —/+ 1-(1H-pyrrol-2-yl) Ethanone® I %
1.64 —/+ DHF? I I
2.70 +/— Dimethyl disulphide® 4 I
1.79 +/— Methylene chloride® e
2.60 +— DHF? I
8.64 —/+ 2-Sec-butylthiazole® e
16.19 —/+ ND v
15.79 +/— p-Menth-1-en-8-ol° e
7.43 —/+ 2-Acetyl pyrroline® I
Stress study 5.36 +/— 6-Methyl-3-heptanone? v %
(stress/control) ]
22.68 —/+ Nerolidol® e I
25.04 —/+ N-Phenyl formamide? e v
2.02 +/— Methyl isobutyl ketone® v
10.2 —/+ SBT® I
15.79 —/+ p-Menth-1-en-8-ol° I I
12.35 —/+ Linalool® e v
15.28 —/+ Isovaleric acid®* I v
4.4 +— 2-Heptanone I
3.42 +— ND rd
19.31 —/+ ND I 17
10.41 +— ND v I
6.88 —/+ Exo-brevicomin® I I
11.68 —/+ Benzaldehyde I
20.25 —/+ ND I I
16.19 —/+ ND*-# I
21.42 +/— 1-(1H-pyrrol-2-yl)-Ethanone® e
2.88 —/+ DHF? I
14.67 +— ND 17
0.98 +/— Trimethylamine® %
Diet study (high fat 15.1 +/— 4,4,5-trimethyl-2-cyclohexenone® I I
diet/standard diet) 5 08 " DHF? > P
12.35 +/— Linalool® e
23.75 —/+ 4-Methyl phenol ( p-cresol)° 1/ v
1 +/— Isopreneb I
7.96 +— ND v 17
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Table 3 Continued
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RT (min) Sign Compound Monte Carlo 99% Iterative reformulation of
name empirical significance training set (70% threshold)
25.04 —/+ N-Phenyl formamide® v
6.82 —/+ ND I
Diurnal rhythms 15.1 —/+ 4,4,5-Trimethyl-2-cyclohexenone® % %
(AM/PM)
22.2 —/+ Phenol® I
2.43 +/— 2,3-Pentanedione®* 1/ v
16.21 —/+ Benzyl methyl ketone® I
20.25 —/+ ND I v
14.58 +/— Acetophenone® v
2.88 —/+ DHF? I I
0.98 +/— Trimethylamine® I
10.41 +/— ND I

ND, identification not determined; —/+ or +/— indicates abundance relationship.

“Tentative chemical identification from MS.
Bidentified using chemical standard.
“Coeluting with methyl butyric acid.
dCoeluting with 4-ethyl phenol.

methanethiol, dimethyl trisulphide, methyl(methylthio)methyl
disulfide, (methylthio)methyl sulphoxide, and bis(2-sulfhy-
drylethyl)-disulfide. Two pheromones, HMH (Novotny
et al. 1999) and dehydro-exo-brevicomin (Novotny et al.
1984) were also detected. Some compounds falling into the
“nondifferentiating’ class do so because they were not recog-
nized in our analysis (they failed to meet certain criteria). For
example, HMH had a very broad peak and as a result would
not have met our algorithm’s criteria and was eliminated from
further analysis. Thus, we emphasize that some compounds,
identified here as nondifferentiating, have the potential to be
biomarkers with a different analytical approach.

Visualization of the overall representation of individual
urine samples

To obtain an independent visualization of the overall repre-
sentation of individual urine samples in their respective clas-
ses, general clustering trends, and outliers among the
observations the local peak tables were subjected to PCA
(Brereton 2003, 2007) after preprocessing as discussed above.
Figure 1 depicts PC scores plots, defined by the components
of the PCA results, for the age, stress, diet, and diurnal
rhythm studies in 2D space (PC2 vs. PC1). PCA projection
demonstrates clear statistical distinctness between the 2 age
groups (4 weeks vs. 8+ weeks). Further separation between §
weeks and older groups is less clear and not illustrated. Good
statistical separation in the PCA plots is demonstrated be-
tween the 2 classes in the conditions stressed versus control
and altered diet versus control. We observe poor separation
between the AM and PM classes using the first 2 PCs, how-

ever, this may be due to the nature of collection that was sep-
arated by 6 h rather than timed to be exactly at light and dark
phases. Separation between AM and PM can be improved
slightly by plotting other PCs but remains poor (data not
shown).

Interrelationships between the different experimental
conditions

Many of the differential peaks identified in the modeling
studies for individual comparisons, including some of the
chemically identified VOCs, are shared across multiple con-
ditions. Of the 49 compounds identified by MS from the
high-ranking biomarker list in each condition, 19 (39%) were
shared with at least one additional study. These higher rank-
ing biomarkers have a greater tendency to show up in mul-
tiple comparisons. These biomarkers could arise because
they are more stable and consistent within and between ani-
mals or alternatively reflect a common set of underlying bio-
chemical and genetic pathways that are selectively and
differentially modulated under the different situations.

Discussion

We have identified a large number of compounds in inbred
male mouse urine, identified as peaks in GC/MS, that display
a signature of variations in maturation state-, environmen-
tal-, and physiological-modulated patterns. Up to 39% of
these compounds may be shared between the different
conditions. The identity of the highest ranking biomarkers
was determined. Using predictive modeling methods, we
demonstrate strong group-related patterns of VOCs.
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Figure 1 Graphs of the scores of the first 2 principal components of the preprocessed peak tables. (A) Maturation state comparison, 4 weeks versus 8+
weeks; (B) stress comparison, restraint stressed versus nonstressed control; (C) diet comparison, high fat (HF) diet versus control (HF C) diet; and (D) diurnal

rhythm comparison, AM versus PM PC, principal components.

Consistent with previous work, it is the characteristic groups
of compounds that vary significantly that define these signa-
tures rather than unique individual compounds (Singer et al.
1997; Willse et al. 2005). Our data support the hypothesis
that differences in VOCs are sufficient to make robust pre-
dictions regarding the state of individuals within a popula-
tion. It is interesting to speculate that we may have identified
selective changes in small groups of chemicals that mice use
to communicate variations in their natural experience to
other animals.

VOC correlations in other studies

Some of the chemicals identified in this study were identified
previously in specific individual conditions. The compound
SBT that was shown to be elevated in older males was pre-
viously shown to be associated with age and was found in
complex with the major urinary proteins (MUPs). (Osada
et al. 2008). The upregulation of specific compounds with

maturation may reflect the sexual maturation and increase
sex-steroids that occur between 4'2 and 6 weeks of age.
For example, SBT and IPT (Table 3) that were elevated
in older males are among those compounds upregulated
or proposed to be upregulated by sex-steroids (Liebich
et al. 1977; Novotny et al. 1984, 1990). Beta-farnesene ap-
peared more abundant in older males in our analysis, al-
though it was not one of the top 20 ranking biomarkers
and was elevated in dominant male mouse urine (Novotny
et al. 1990). We determined that the differential VOC, di-
methyl disulphide, is present at higher levels in young males,
consistent with an association with behavioral subordinance
and upregulation in subordinate males (Keegans et al. 1993).
In a different condition, we observed increased levels of 2-
heptanone correlated with increased stress. Rodents that
have been adrenalectomized (the surgical removal of one
or both adrenal glands) and fail to induce/elicit classic hor-
monal stress responses contain lower levels of these com-
pounds in urine (Novotny et al. 1986). Gutiérrez-Garcia
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et al. (Gutiérrez-Garcia et al. 2006, 2007) identified 2-hepta-
none and linalyl propionate, an ester of linalool that we iden-
tified as a stress biomarker (2-heptanone is increased and
linalool is depressed following restraint stress), as associated
with stress. Of the 9 biomarkers found in the diurnal rhythm
comparison, 4 were in common with the stress condition
(DHF 2.88 min, trimethylamine, and 2 chemicals not iden-
tified [ND 20.35 and 10.41 min]). Corticosterone, released
from the adrenal glands during stress, is also released during
natural diurnal rhythms. Peak concentrations occur at the
beginning of the dark phase (activity period), with a decrease
over the remainder of the 24-h period (Velasco et al. 1993). In
our condition, the AM collection was made shortly after the
light phase began, and the PM collection occurred just before
the active dark phase or 6 h apart from the light phase. Thus,
we would expect corticosterone levels to be lower in the PM
collection (and more similar to the control nonstressed mice)
than in the samples. The abundance intensity relationships
for all the compounds are correlated between these 2 com-
parisons (when the abundance of these compounds is high in
the AM, it is high in the stressed animals).

Source of VOCs

Some of the prominent VOCs identified in this study, includ-
ing the previously identified male pheromones SBT, exo-
brevicomin, and 2-heptanone are differentially bound and
stabilized by MUPs (Humphries et al. 1999; Sharrow
et al. 2002; Novotny 2003). The presence of these VOCs
in multiple comparisons suggests that the stability of the
VOC may contribute to its identification as a biomarker.
Many of the compounds identified in this study can be traced
to known metabolic pathways, including the degradation of
amino acids, oxidative processes, hormone and/or steroid
triggered production, and fatty acid degradation (Charlton
and Roelofs 1991). Isoprene, a precursor of terpenes, is also
a differential biomarker in our studies consistent with a role
for the mevalonate biosynthesis pathway in VOC generation
(Sacchettini and Poulter 1997; Kuzuyama 2002). Moreover,
the elevated levels we observed for urinary isoprene in the
high-fat diet group may be linked specifically to cholesterolo-
genesis, as has been proposed for isoprene detected in breath
(Legato 2000; Karl et al. 2001), and may be utilized as a non-
invasive marker of blood cholesterol levels (Taucher et al.
1997; Karl et al. 2001).

Overlap of differential chemicals between studies

Why do many chemicals show up in multiple comparisons?
The preferential identification of stable compounds, a natu-
ral merging of pathways, and interdependence between the
different groups may underlie the existence of a common
group of biomarkers. The stability of some compounds
may be inherent in their structure, whereas others are stabi-
lized by protein binding. The shared biomarkers 2-heptanone
and SBT bind MUPs, making these compounds more stable
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and permitting their release as scent marks over time (No-
votny et al. 1984; Humphries et al. 1999). Metabolic changes
shared by several conditions produce a common subset of
biomarkers because they are controlled by the same regula-
tory components. Diurnal rhythms, diet, and stress could
exhibit the same chemicals because they each involve corti-
costeroid. This simple hormone can stimulate gluconeogen-
esis to ensure an adequate fuel supply; increase mobilization
of free fatty acids, making them a more available energy
source; conserve glucose for the brain by reducing glucose
utilization in other tissues; stimulate protein catabolism to
release amino acids for use in repair, enzyme synthesis,
and energy production; act as an antiinflammatory agent;
depress immune reactions; and increase the vasoconstriction
caused by epinephrine (Munck and Naray-Fejes-Toth 1994;
Sapolsky 2000).

Urinary profiling and biomarker discovery

Functional genomics, integrative and systems biology, phar-
macogenomics, and biomarker discovery for disease progno-
ses, diagnoses, and therapy monitoring have all focused on
metabolomics because many diseases are indeed a result of
metabolic disorders (Hollywood et al. 2006). We identified
biomarkers that may have the potential to lead to a better
understanding of disease processes as specific metabolic path-
ways including degradation pathways of amino acids, oxida-
tive pathways, production triggered by hormone and/or
steroid levels (e.g., corticosteroids), and fatty acid metabo-
lism have been highlighted as being important (Charlton
and Roelofs 1991). These biomarkers, their specific meta-
bolic pathways of origin, and an understanding of the inter-
dependence between different pathways may serve as
a hypothesis starting point for therapeutic intervention
and drug discovery. Beyond disease, these data provide a dis-
crete subset of compounds sufficient to predict several pa-
rameters of natural variations influencing mouse urinary
profiles that can be further examined under additional con-
ditions of environmental exposure. It is important to note
that these studies were performed in a single inbred strain
(C57BL/6J-H-2°), and further work in other strains or out-
bred strains will need to be done to confirm the predictive
nature of these compounds for mice in general. However,
our work highlights the potential for urinary profiling to pro-
vide a robust signature of the state of individuals.

Mice provide an ideal framework to better understand the
mechanisms that produce and modulate VOCs in bodily
emissions. In this study, we demonstrate that volatile signals
are emitted by inbred mice that provide information on
maturity, diet, stress, and diurnal rhythms; each important
individual attributes with possible evolutionary influence.
Our results also identify at least some of the components that
create novel groups of hitherto unrecognized differential
chemicals along with previously identified compounds that
provide these robust signatures. We also showed a strong
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endocrine (especially sex-steroid effects) influence on urinary
profiles. Additionally, components that appear repeatedly
across comparisons are known to bind specific classes of car-
rier proteins, suggesting a critical mechanistic role for spe-
cific carrier proteins in determining unique urinary
profiles. Finally, the presence of these shared chemicals that
communicate individual status across multiple conditions
suggests that a relatively restricted collection of chemicals
may be used for biological communication.

Supplementary material

Supplementary material can be found at http://www.chemse
.oxfordjournals.org/.
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