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Abstract

Body fluids such as urine potentially contain a wealth of information pertaining to age, sex, social and reproductive status,
physiologic state, and genotype of the donor. To explore whether urine could encode information regarding environment,
physiology, and development, we compared the volatile compositions of mouse urine using solid-phase microextraction and
gas chromatography–mass spectrometry (SPME-GC/MS). Specifically, we identified volatile organic compounds (VOCs) in
individual urine samples taken from inbred C57BL/6J-H-2b mice under several experimental conditions—maturation state, diet,
stress, and diurnal rhythms, designed to mimic natural variations. Approximately 1000 peaks (i.e., variables) were identified per
comparison and of these many were identified as potential differential biomarkers. Consistent with previous findings, we
found groups of compounds that vary significantly and consistently rather than a single unique compound to provide a robust
signature. We identified over 49 new predictive compounds, in addition to identifying several published compounds, for
maturation state, diet, stress, and time-of-day. We found a considerable degree of overlap in the chemicals identified as
(potential) biomarkers for each comparison. Chemometric methods indicate that the strong group-related patterns in VOCs
provide sufficient information to identify several parameters of natural variations in this strain of mice including their
maturation state, stress level, and diet.

Key words: age, diet, solid-phase microextraction and gas chromatography–mass spectrometry, stress, urine, volatile organic
compound

Introduction

Body fluids contain vast amounts of information that correlates

with health, gender, age, stress level, and social status (Singer

et al. 1997; Novotny 2003; Osada et al. 2003; Rock et al. 2006;

Röck et al. 2007; Xu et al. 2007). Metabolic profiles of biolog-

ical fluids have reflected differences in endocrine state, age, and

genetic makeup of the donors (Rhodes et al. 1981; Holland
et al. 1984; Singer et al. 1997; Bollard et al. 2001; Osada

et al. 2003; Willse et al. 2005; Rock et al. 2006; Novotny

et al. 2007). Moreover, these profiles are perturbed by disease-

induced aberrations and thus provide the potential inter-

pretation of differences between normal and pathological

physiologic processes. For example, patients with diabetes mel-

litus display large differences in urinary volatile metabolites
(Rhodes et al. 1981; Hollywood et al. 2006). Urinary profiling
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thus has the potential to lead to the discovery of novel disease

linkages (Miyashita and Robinson 1980; Rhodes et al. 1981).

Urine, an excreted body fluid, is readily available and eas-

ily collected using noninvasive methods. Urine is rich in

chemical information and is a potent source of pheromones
and/or semiochemicals that play a significant role in repro-

duction and social interaction in rodents and other mammals

(Singer 1991; Kayali-Sayadi et al. 2003; Burger 2006). Urine

contains several thousands of components (Bollard et al.

2001) and at least 100 volatile compounds have been chem-

ically identified in mouse urine. These volatile urinary com-

pounds represent nearly all common chemical classes,

including aldehydes, alcohols, ketones, esters, ethers, aro-
matics, and acids. Previous assays employed to understand

these emitted chemical signals involve fractionation and/or

targeting of specific components that in effect reduces the

collective power of the emitted signal (metabolome).

We have utilized a global analysis approach to profile low

molecular mass volatile and semivolatile (<290 Da) organic

constituents in urine with a uniform experimental protocol.

This approach to studying global urinary profiles in a system
(i.e., organism) under a given set of conditions is particularly

challenging (Rochfort 2005). These challenges include the

wide range of abundances of volatile organic compounds

(VOCs) within a single sample, diversity of chemical struc-

tures that are necessary to detect, the continuous nature of

the data sets (information from a single compound is spread

across many scans and may overlap/blend in with adjacent

compounds) produced and the interdependence of individual
VOC’s. VOC profiling studies, using methodology borrowed

from other global ‘‘omic’’ studies and new analysis methods,

have the potential to link metabolites with their respective

metabolic pathways and establish relationships with protein

and gene expression levels.

In this study, we employed urine profiling methods to de-

termine whether and how environmental, physiological, and

developmental information is coded in the chemical signals
present in urine. We generated mouse urinary profiles under

conditions mimicking natural variations. The enormous vol-

ume of data generated and its multidimensional aspects re-

quired the use of novel predictive modeling methods

(Brereton 2007, 2009; Dixon et al. 2007; Wongravee et al.

2009). Using these methods, we show strong group-related

patterns in VOCs suggesting that there is enough informa-

tion in these metabolites to code for the natural variations
that mice experience. These chemometric methods permitted

utilization of the full urinary profile for robust biomarker

discovery. Specifically, we describe differences due to matu-

ration state, diet, stress level, and diurnal variation to help

further define ‘‘normal’’ urinary constituents. These data

provide a discrete subset of compounds that can be further

examined under additional conditions of environmental ex-

posure and/or disease development. Furthermore, specific
biochemical pathways and subsequent processes for produc-

ing and releasing the VOCs are implicated.

Materials and methods

Mice

Male mice, (C57BL/6J-H-2b), used in these studies were ei-

ther ordered directly from a single vendor, Jackson Labora-

tory, Inc., (diet and stress studies) or generated from breeders

obtained from Jackson Laboratory (maturation and diurnal

rhythm studies) and maintained in the animal facility at

Johns Hopkins University. All mice were housed under uni-

form conditions in the same room, 4 to a cage. Cages had
corncob bedding and were encapsulated with air flowing into

and out of the cage to reduce the odors/viruses/etc. Cages

were changed once every 2 weeks.With the exception of mice

in the diet study, mice were allowed free access to a standard

diet (no. 2018S Harlan Teklad) and water. The animal room

was maintained at 21–22 �C, 70% relative humidity, and

12:12 h light:dark lighting regime, with lights on at 0600 h.

Sample collection

Mouse urine was collected directly into cryogenic vials using

gentle abdominal pressure. A minimum of 50 lL urine from

a single collection was required for our solid-phase micro-

extraction and gas chromatography–mass spectrometry

(SPME-GC/MS) processing. The number of actual samples

collected, processed, and analyzed (stated below) was lower
than the theoretical number of possible samples because the

mice either did not provide any urine sample or not enough

to meet the 50 lL minimum criteria. After collection, vials

were immediately capped and stored at –80 �C for up to

24 months. The animal handling procedures were approved

by the Animal Care and Use Committee at the Johns

Hopkins University.

Maturation state and diurnal rhythm studies

All animals derived from a common breeder population ob-

tained from Jackson Laboratories. Urine was gathered from

2 panels of 10 mice every 4 weeks as they aged, beginning

with 4 weeks and ending with 30 weeks. Urine was sampled

for 5 days at an age point, both in the morning and in the late

afternoon roughly 6 h apart (10 possible collections total per

mouse per age point) resulted in 384 samples; the breakdown
of the samples analyzed is as follows: 4 week (n = 48), 8 week

(n = 144), AM (n = 93), and PM (n = 99).

Stress study

Urine was collected from 10 stressed and 10 control mice at

8–10 weeks of age. To introduce stress (Schaefer et al. 2000),

2 pieces of screen cut approximately to 15 · 15 cm and sta-

pled around 3 edges was used to restrain individuals from the
group of 10 mice for 30 min on 10 separate occasions. A

mouse was placed in the screen enclosure and secured with

binder clips. Urine was collected 90 min after onset of stress
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restraint. These samples were collected over the course of 2

weeks and resulted in 67 stress and 63 stress control samples.

Diet study

Urine was collected from 10 altered diet and 10 normal diet
mice at 10–12 weeks of age. Altered diet mice were fed a high-

fat diet for 2 weeks prior to urine collection and continued to

be fed this diet until urine collection was complete. The stan-

dard diet fed to mice in the age, diurnal rhythm, and stress

studies contains 18.2% protein and 5.8% fat by weight; the

altered diet was composed of the same ingredients with the

exception that it had additional cocoa butter, making it

16.4% protein and 15.3% fat by weight (Harlen Teklad).
Urine was collected over a 2-week period on 10 separate days,

totaling 10 possible separate urine collections per mouse

(resulting in 59 altered diet and 60 control diet samples).

Sample preparation

To enhance volatile extraction from mouse urine, sodium

chloride was added to headspace vials prior to the addition
of urine. Two-milliliter crimp-cap top glass headspace vials

(Supelco) were filled with 450 lL 25% sodium chloride (J.T.

Baker, ACS Reagent) in distilled de-ionized water. Mouse

urine was thawed and 50 lL of urine from individual mice

(urine collections were not pooled) was then transferred into

the prepared headspace vials. The vials were immediately

sealed with magnetic crimp caps containing gastight silicon

/polytetrafluoroethylene septum (Supelco). In general, vials
were run on the GC/MS within 48 h of preparation. Controls

were routinely run for air and stock NaCl solution.

Data generation using SPME-GC/MS

SPME of the headspace in vials containing mouse urine was

performed with divinylbenzene/carboxen/polydimethylsilox-

ane 50/30 lm 1-cm-long metal fibers (Supelco) and Merlin
microseals (Supelco). Fibers were preconditioned according

to manufacturer recommendations. Sampling was accom-

plished using an automated headspace sampler (MPS2,

Gerstel) connected to a GC/MS (6890/5973N, Agilent) out-

fitted with ChemStation D.01.02. Vials were placed onto

a Peltier storage cooler held at 4 �C in order of analysis. Sam-

ples were randomized between time of collection, age groups,

and individual mice. SPME fibers were replaced as needed,
usually after running between 70 and 100 samples. The head-

space sampling protocol was as follows: vial equilibration,

65 �C (2 min); extraction, 65 �C (35 min) with low-level ag-

itation; desorption in inlet, 250 �C (2min); 15 min bakeout of

fiber in bakeout station. An SPME liner was used and

changed as necessary (0.75 mm inner diameter [i.d.], Supel-

co). The GC column used was a DB-WAX column (0.25 mm

i.d. · 30 m · 0.25 lm film thickness; Agilent Technologies).
GC oven profile was as follows: 60 �C held for 2 min, ramped

to 230 �C at 5.0 �C/min, and hold for 9 min. Heliumwas used

as the carrier gas with a flow rate of 2 mL/min. The MS

scanned from 41 to 400 m/z with a threshold of 10. The

MS quad temperature was set to 150 �C and the MS source

temperature to 230 �C.

Standards and chemical identification

Machine variability was monitored by running a VOC cali-

bration standard (Sigma Aldrich) and running a daily DB-

WAX test standard (Agilent Technologies). Chemicals which

were confirmed by matching retention time (RT) and spectra

to known chemical standards run in our laboratory under

identical onditions are indicated in Table 1. The remaining

chemicals were tentatively identified by Chemstation identifi-
cation matches to the National Institute of Standards and

Technology (NIST) database because the majority of chem-

icals in this group are not commercially available and include:

6-hydroxy-6-methyl-3-heptanone (HMH), dihydrofuran

(DHF), 2-isopropyl-4,5-dihydrothiazole (IPT) and 2-sec-

butyl-4,5-dihydrothiazole (SBT). Compounds that were not

present in the NIST database were tentatively identified on

the basis of comparison of spectra to chemicals reported in
the literature (Liebich et al. 1977; Novotny et al. 1984;

Novotny, Jemiolo, et al. 1999; Novotny, Ma, et al. 1999).

Signal processing and data analysis

Data preprocessing, peak detection, and matching

The methods for data processing and analysis have been de-
scribed in depth (Dixon et al. 2006). For GC/MS experi-

ments, tunable parameters were fixed prior to performing

preprocessing and were selected according to chromatogram

scan rate, average peak width, noise levels, and retention

time drift tolerance. All 3 steps (preprocessing, peak detec-

tion, and matching) were automated, and data were con-

verted to compatible file formats and analyzed using

Matlab and in-house algorithms.
Initial data smoothing and preparation were accomplished

in 3 stages: 1) the mass channels are examined to determine

which contain potential information—an m/z channel

must contain 11 or more nonzero scans to be considered

Table 1 Details of number of samples and peaks for maturation state,
stress, diet, and diurnal rhythm studies

Study Number of samples Number of peaks

Maturation state 4 weeks ‡ 8weeks

44 148 1039

Stress Stressed mice Control mice

67 63 1056

Diet High fat High fat control

59 60 996

Diurnal rhythms AM PM

93 99 1039
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informative. An m/z channel with 10 or less nonzero scans is

removed; 2) noise factors were calculated to confirm that se-

lected peaks are real and informative; and 3) chromato-

graphic peaks were smoothed using a wavelet filter to

remove additional noise from the chromatograms that inter-
feres with peak detection.

Subsequently, peaks were identified by 1) detection of

peaks in each informative mass channel using the first deriv-

ative of segments along each single ion chromatogram; 2)

peaks were validated by matching a set of predefined criteria

including intensity and width (both minimum and maximum

criteria were used); and 3) the mass channel peaks for the

same compound were grouped—peaks in different mass
channels will sometimes come from the same origin (and

for that reason have similarly shaped peaks); they were

grouped accordingly.

Finally, peak matching or alignment was performed to de-

termine which peaks in different chromatograms correspond

to the same compounds. This phase was also accomplished in

3 stages: 1) candidate target peaks that had sufficiently dif-

ferent retention times and mass spectra from one another to
postulate they have originated from different compounds

were identified; 2) groups of peaks associated with each tar-

get—these peaks found in different chromatograms are pos-

tulated to have the same chemical origin were defined; and 3)

groups of peaks that had similar characteristics over all the

chromatograms were merged. Rare peaks, occurring less

than 5 times across the entire set of mouse samples, were re-

moved as were 124 siloxane peaks that were from the SPME
fiber. The data were used to create a ‘‘master peak table’’

using all samples from all studies, whose rows consist of

721 chromatograms and columns of 3401 unique com-

pounds. For each study, a ‘‘local peak table’’ was obtained,

consisting of the subset of peaks and samples found in each

study; a further reduction was performed so that only peaks

detected at least 5 times in the local subset of samples were

retained. The number of samples and variables in each study
are listed in Table 1. Further details of this approach are

reported elsewhere (Wongravee et al. 2009). Peak areas

for each peak in the chromatogram were square rooted to

reduce the influence of very intense peaks; a further discus-

sion rationale is discussed elsewhere (Dixon et al. 2007; Xu

et al. 2007). These values were then normalized row scaled

summed to 1 for each chromatogram because the total ab-

solute intensity of each chromatogram could vary for several
reasons and to provide greater reliability than rationing to an

internal reference standard. Finally, each normalized square

root peak area was standardized. This process gave each

peak equal significance in the resultant analysis and does

not assume that an intense peak has a more important influ-

ence over discrimination than a low intensity one. If the

normalization was taken in the first step followed by the

square root, the summation of each chromatogram would
be unequal and incomparable because the normalization

properties are destroyed.

Visualization method: principal components analysis

From Table 1, the data sets showed a very high number of

variables (ca. 1000 variables in each study). Because it is dif-
ficult to visualize and determine the number of significant

factors for data sets with high numbers of variables, data re-

duction was performed. Principal component analysis (PCA)

is an orthogonal linear transformation method, which allows

visualization of data in a new coordinate system where the

first component represents the greatest variance of the data

(principal component 1-PC1), the second greatest variance is

projected to the second coordinate (PC2), and so on. PCA
reduces dimensionality in multivariate data sets to those data

characteristics that contribute most to the overall variance.

PCA loadings identify components (peaks or combinations

of peaks) that have the most influence over the difference be-

tween samples. More detailed information on PCA is dis-

cussed elsewhere (Brereton 2003, 2007). In this paper, we

employed PCA solely for visualization and not modeling

and as such were not concerned by how many components
are significant (unlike for partial least squares [PLS] meth-

ods).

Determining potentially significant markers

Given that there were a large number of factors that influ-

ence the mouse urinary signal, for example, instrumental ef-
fects, analytical methods, environment (bedding etc.), food

eaten, individuality, etc., and it is anticipated that only a very

small number of compounds measured will be markers for

the systematic factors that have been studied, a univariate

method (T-statistic) and 2 multivariate methods based on

PLS, PLS weights (PLSW), and PLS regression coefficients

(PLSRC) (Dixon et al. 2007; Brereton 2009;Wongravee et al.

2009) were used to identify potential discriminatory markers
in the GCMS peak tables. Thus in this manner, we endeav-

ored to discriminate between 2 groups of samples, although

there are alternative approaches such as the Fisher weight

that can be employed when more than 2 groups of samples

are part of the model.

Methods for determining relative significance of variables

t-Statistic

The t-statistic method is a common univariate indicator of
significance of whether a variable differs significantly in

distribution between 2 classes. However, the correlation be-

tween variables is not taken into account during the calcu-

lation. The differences between means of each variable

relative to the pooled standard deviation are used for calcu-

lating the t-statistic. Variables with highest t-statistic values

(extremely positive or negative) are suggested as potential

discriminators for one or either of the classes according to
the sign. Variables can be ranked according to the magnitude

of the t-statistic; however, in this paper, we employedMonte

Carlo permutations as an alternative as described below.
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Partial least squares

PLSmethod is a common extension of multiple linear regres-

sion (Geladi and Kowalski 1986; Martens and Naes 1989;
Brereton 2000). It is a multivariate data analysis technique

that can be used to relate 2 or more blocks of information

while identifying underlying relationships. PLS discriminant

analysis (PLS-DA) (Ståhle and Wold 1987; Barker and

Rayens 2003; Dixon et al. 2007) is an extension to discrim-

ination, where one block contains the analytical data (in our

case the peak table) and another the classifier (in our case

a label +1 or –1 according to class). In the PLS method, it
is necessary to determine the appropriate number of PLS

components in the model and this was determined using

bootstrap (Efron and Tibshirani 1993; Dixon et al. 2007)

for each study. We have found that the bootstrap provides

a stable solution although there are several alternative meth-

ods to determine the number of PLS components such as

cross validation (Ståhle and Wold 1987) and permutation

test (Wiklund et al. 2008).

PLS weights

This method used the weight matrix obtained from PLS to

provide a statistical indicator as to which significant varia-

bles are most significant, in our case discrimination between
2 groups. If there was more than one significant component,

the PLSW was calculated by the root mean square of the

weight matrix for each variable over all PLS components

in the model. Therefore, the PLSW were all positive, and

the markers were ranked according to the size of PLSW.

PLS regression coefficients

This was used as an alternative approach for determining

the relative significance of variables. In its simplest form,

the regression model specifies the relationship between an

experimental data matrix and a classifier. PLSRC were cal-
culated by multiplying the weight matrix and the variable

loading matrix obtained from the model. The magnitudes

of the PLSRC were used to determine the relative signifi-

cance of markers. The sign of PLSRC was used to determine

which group the variable was amarker for, like the t-statistic,

but is a multivariate rather than univariate indicator of

significance.

Methods for determining how many variables are

significant

The T-statistic, PLSW, and PLSRC described above were

calculated for all variables in the data set. A simple approach

was used to rank the variables according to the magnitude of

the statistical indicator function. The variable with the high-
est magnitude was ranked number 1 as the best discriminator

for the data set and so on. Whereas this approach can cer-

tainly help determine which variables are most likely to be

discriminatory it does not necessarily demonstrate that they

are discriminatory for a given data set. As previously shown,

it is possible to generate a completely random data set

(Brereton 2006, 2009), and yet, we can still order variables

according to whether they appear significant or not. Because
of the potential identification of random variables that have

99% significance, it was important to utilize additional

criteria to identify the significance of the variables. A further

problem is that the most variables are not normally distrib-

uted, so traditional statistical tests, for example, F test or

analysis of variance, that assume normal distributions will

not provide appropriate probabilities. Despite these draw-

backs, statistics such as the t-statistic can still be used to
assess the significance of variables providing they are not

converted directly into a probability and other empirical

approaches are employed to assess their significance. In this

paper, we used both the Monte Carlo permutation method

(Xu et al. 2007; Wongravee et al. 2009) and iterative refor-

mulation of training set models (Wongravee et al. 2009) to

determine how many and which variables were significant.

Monte Carlo method

TheMonte Carlo permutation method allows us to assign an

empirical probability of significance for each variable. The
method works by randomly permuting the class membership

of the samples and calculating the test statistics using each

random permutation. This procedure was repeated many

times (5000 times for the paper) to obtain a background null

distribution of statistical indicators for each variable. Then,

the values calculated from the data set were compared with

this null distribution to determine their empirical signifi-

cance. In this paper, we set the empirical significance thresh-
old to 99%. If there are 5000 permutations, a threshold of

99% (0.99) represents the value of the indicator with true

class information that exceeds the value from the null permu-

tation 4950 times of 5000. A variable that gives test value

‡99% significance was suggested as a potential marker. Each

marker had an empirical significance attached to it so that all

markers with of ‡99% empirical probability were ranked in

order of significance. This procedure was applied to all 3 sta-
tistical indicators (t-statistic, PLSW, and PLSRC) described

in this paper.

Iterative reformulation of training sets

The traditional approach to variable selection is to perform

this on the entire data set (autoprediction) and determine the

significance of a marker compound from its test value. How-

ever, when we test models, we usually split the data into test

and training sets (Brereton 2009), using the training set to

establish the model and the test set to determine how well

the model performs. It can be shown that if variables are se-
lected in autopredictive mode (i.e., on the entire data set in-

cluding both test and training sets; (Brereton 2006) there is

a danger or overfitting. An alternative approach is to select
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potential markers only on the training set. To this end, we

divided the data into test and training sets several times

(100 in this paper), and each time the training set consisted

of a different subset of samples. This reduced the danger of

atypical training sets (e.g., including outliers) and also al-
lowed for an average of several (=100 in this paper) models

for assessment of performance. The difficulty with this ap-

proach is that each subset of data may result in different

markers being selected, if these are chosen using the training

set rather than using autopredictive model. If the data were

random, we would expect wide variability in the markers

chosen; however, if the same compound is selected many

times as a marker for each split in the data, it is to be robust
to the samples included in the training set and so likely to be

a true marker. We call this method ‘‘iterative reformulation

of training set models’’ (Wongravee et al. 2009). We used this

method with the samples in the data set, which were divided

into 2 independent data sets: training set (samples that are

used to form the model) and test set (samples that are used

to assess how good the model is—‘‘validation set’’). The test

statistics (t-statistic, PLSW, and PLSRC) were performed on
the training set to rank the variables. In each iteration, the

most significant variables are recorded. In this paper, we re-

port a modification of the previously published work as we

chose the number of variables using Monte Carlo permuta-

tions on the autopredictive data set, at 99% significance level,

so if these permutations resulted in 31 variables being found

to be significant (e.g.), we counted the number of times that

a variable is present in the top 31 in each iteration. The pro-
cedure was repeated 100 times, thus obtaining 100 lists of

significant variables. If a variable was found to be in this list

70 times or more, the variable was suggested to be a real

marker.

Results

VOCs and prediction of maturation state, stress level, diet,

and diurnal rhythms

We compared the volatile compositions of urine using

SPME-GC/MS to determine whether inbred mouse urine

encodes information about the environment, physiology,

and maturity of the animal. Specifically, we identified VOCs
in individual urine samples taken under 4 experimental con-

ditions—maturation state, diet, stress, and diurnal rhythms,

designed to mimic natural variations. Supplementary Figure

1 shows a representative total ion chromatogram from the

VOC profiles of the different experimental conditions that

were performed. GC/MS profiles allowed identification of

new differential compounds in addition to confirming the

identity of previously known chemosignals. Table 1 de-
scribes the number of samples and peaks identified in the

different experimental data sets. The 4 studies identified

between 996 and 1056 unique GC/MS peaks in each

experiment that were subsequently analyzed for distinguish-

ing variables.

Identification of differentiating VOCs

Because visualization of each individual GC/MS data set

(i.e., chromatogram and spectra) to identify unique features

is impractical, chemometric approaches for datamining were

employed to analyze and identify variables that were associ-

ated with the different experiments. An example of a chro-

matogram is shown in Supplementary Figure 1, which is

a representative total ion chromatogram from the different
experimental conditions with labeling of some of the identi-

fied peaks.

In Table 2, we list the number of markers suggested to be

significant using chemometric methods, including PLSW,

PLSRC, and T statistics as described above. In order to de-

termine a subset of variables that have a high significance to

the experimental conditions, we applied Monte Carlo meth-

ods with a threshold of 99% or iterative reformulation of the
training sets with a 70% threshold. The number of times each

candidate marker is found in the 100 iterative reformulation

of training set models is illustrated in Supplementary Figure

2. These frequency plots illustrate that 41 of 79 possible vari-

able counts (over all 3 statistics) are found in at least 99% of

the iterations and only 13 between 70% and 80% of the time.

Visualization of the graphs in Supplementary Figure 2 sug-

gests that a 70% cutoff (after first using the number of var-
iables that have an empirical probability of 99% usingMonte

Carlo methods) is a suitable choice—a few variables are

found very occasionally but these are probably due to atyp-

ical selections of training set samples. In order to draw up

a final list of markers, we select only those markers that

are found to be significant using all 3 statistics and both

Monte Carlo and iterative reformulation of training set mod-

els: both approaches select quite similar subsets of variables.
Table 3 lists the variables and the corresponding compound

names to the identified variables meeting the above criteria.

Compounds were either identified using purified chemical

standards as indicated or had tentative identifications that

were of high confidence. As shown in Table 3, the maturation

state comparison modeling results showed significant differ-

ences in 12 urinary components (IPT, 1-(1H-pyrrol-2-yl)

ethanone, SBT, benzyl methyl ketone, 1-(1H-pyrrol-2-yl)
ethanone, DHF 1.64 min (decomposition product of a pher-

omone HMH (at 13.1 min, a very broad peak, not in itself a

differential marker) (Novotny et al. 1999), dimethyl disul-

phide,methylene chloride,DHF2.60min, 2-sec-butylthiazole,

p-meth-1-en-8-ol, and 2-acetyl pyrroline;Novotny et al. 1999).

Interestingly, the pheromones 2-heptanone (Novotny et al.

1986), alpha- and beta-farnesene (Novotny et al. 1984)

appeared as initial significant variables but were not part
of the final list of compounds that met the above threshold

conditions. The abundance of 4-methyl phenol was greater

in the older animals, consistent with previous studies
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(Osada et al. 2003), but failed to appear within our top rank-
ing compounds. Several of the 12 biomarkers were also

shared with the markers identified in subsequent conditions.

Our results suggest that a novel group of previously unrec-

ognized age-differential chemicals benzyl methyl ketone,

1-(1H-pyrrol-2-yl) ethanone, DHF 1.64 min, dimethyl

disulphide, methylene chloride, DHF 2.60 min, 2-sec-

butylthiazole, p-meth-1-en-8-ol, and 2-acetyl pyrroline) along

with previously identified compounds (IPT and SBT)
(Novotny et al. 1984, 1990; Osada et al. 2003) provide a robust

signature of maturation state.

We successfully identified 20 top ranked peaks in our stress

comparison (restraint stress vs. control) (Table 3). The 20

chemicals showing differences are listed here (6-methyl-3-

heptanone, nerolidol, N-phenyl formamide, methyl isobutyl

ketone, SBT, p-menth-1-en-8-ol, linalool, isovaleric acid

coeluting with 2-methyl-butyric acid, 2-heptanone, exo-
brevicomin, benzaldehyde, peak at RT 20.25 min, 1-(1H-

pyrrol-2-yl) ethanone, DHF 2.88 min, trimethylamine as

well as 5 compounds whose structures could not be deter-

mined [ND 3.42, 19.31, 10.41, 16.19, 20.25, and 14.67

min]). SBT has been previously shown to be associated with

aggression in male mice and is considered to be a pheromone

(Novotny et al. 1985). In addition, 2-heptanone has also been

identified as associated with adrenal gland activity in mice
(Novotny et al. 1986). Of the 20 biomarkers, 9 were in com-

mon with at least one of the other 3 comparisons. These re-

sults identify a novel group of hitherto unidentified stress-

differential chemicals in addition to identifying several com-

pounds that have previously been associated with mouse ad-

renal and pheromone activity (Novotny et al. 1986).

A similar analysis in the diet comparison (high fat diet vs.

regular diet) resulted in 8 significantly different VOCs (4,4,5-
trimethyl-2-cyclohexenone, DHF 2.88 min, linalool, 4-

methyl phenol, isoprene, N-phenyl formamide, along with

2 undetermined compounds [ND 7.96 and 6.82 min]). Two
compounds, linalool and 4-methyl phenol were recently

shown to differ significantly in mouse urine of mice on differ-

ent diets and major histocompatibility complex (MHC)

backgrounds (Kwak et al. 2008). Of these 8 biomarkers, 4

were in common with at least one of the other 3 comparisons.

Additional identified and tentatively identified VOCs that

differ in abundance but failed to score within the top 20

biomarkers included 2-methyl-3-buten-2-ol, 4-heptanone,
2-ethyl-6-methyl-pyridine, and N, N-dimethyl urea. We con-

clude that, the diet of an individual can selectively modulate

metabolic functions and generate characteristic patterns of

VOCs.

Maturation, diet, and stress all reflect reasonably long-

term changes in metabolic state. We decided to examine

whether short-term changes, those associated with diurnal

rhythm (AM vs. PM), showed chemical differences. Nine
chemicals differed in abundance with time-of-day (4,4,5-tri-

methyl-2-cyclohexenone, phenol, 2,3-pentanedione, benzyl

methyl ketone, acetophenone, DHF 2.88 min, and trimethyl-

amine along with 2 compounds that were not determined

[ND 20.25 and 10.41 min]) (Table 3). Of the 9 biomarkers,

6 were in common with at least one of the other 3 compar-

isons, and 4 were in common with the stress comparison

(DHF 2.88 min, trimethylamine, and 2 of the undetermined
compounds [ND 20.25 and 10.41]). An additional chemically

identified VOC (N, N-dimethyl urea) differed in abundance

but only appeared in a few samples and failed to rank in the

top 20 biomarkers. These data reveal a novel group of diur-

nal rhythm-differential chemicals provide a time-of-day

signature.

A number of previously identified VOCs were detected

inurineheadspacebutdidnotariseashighlydifferentiatingcom-
pounds in our analysis. Sulfur-containing compounds, present

in nearly all chromatograms, included tentatively identified

Table 2 Number of variables deemed to be significant using variable selection

Data set Three methods Two methods One method

T, PLSW, and PLSRC T and PLSW T and PLSRC PLSW and PLSRC T PLSW PLSRC

Monte Carlo; 99% empirical probability

Age 11 146 11 11 166 148 11

Stress 15 79 15 17 97 83 17

Diet 7 86 7 7 110 90 7

AM/PM 8 53 9 8 68 57 9

Iterative reformulation of training sets; found in 70% of training sets

Age 5 5 5 5 7 5 5

Stress 10 11 10 10 11 13 11

Diet 3 4 4 3 5 4 4

AM/PM 4 5 4 4 5 5 4

T, T-statistic.
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Table 3 Listing of markers and compounds that were identified by variable selection methods as highly significant

RT (min) Sign Compound
name

Monte Carlo 99%
empirical significance

Iterative reformulation of
training set (70% threshold)

Maturation study
(4 wk/8+ wk)

8.28 �/+ IPTa U U

10.2 �/+ SBTa U U

16.21 +/� Benzyl methyl ketonea U U

21.42 �/+ 1-(1H-pyrrol-2-yl) Ethanonea U U

1.64 �/+ DHFa U U

2.70 +/� Dimethyl disulphidea U U

1.79 +/� Methylene chloridea U

2.60 +/� DHFa U

8.64 �/+ 2-Sec-butylthiazolea U

16.19 �/+ ND U

15.79 +/� p-Menth-1-en-8-ola U

7.43 �/+ 2-Acetyl pyrrolinea U

Stress study
(stress/control)

5.36 +/� 6-Methyl-3-heptanonea U U

22.68 �/+ Nerolidola U U

25.04 �/+ N-Phenyl formamidea U U

2.02 +/� Methyl isobutyl ketonea U

10.2 �/+ SBTa U

15.79 �/+ p-Menth-1-en-8-ola U U

12.35 �/+ Linaloola U U

15.28 �/+ Isovaleric acidb,c U U

4.4 +/� 2-Heptanone U

3.42 +/� ND U

19.31 �/+ ND U U

10.41 +/� ND U U

6.88 �/+ Exo-brevicomina U U

11.68 �/+ Benzaldehyde U

20.25 �/+ ND U U

16.19 �/+ ND*,a U

21.42 +/� 1-(1H-pyrrol-2-yl)-Ethanonea U

2.88 �/+ DHFa U

14.67 +/� ND U

0.98 +/� Trimethylaminea U

Diet study (high fat
diet/standard diet)

15.1 +/� 4,4,5-trimethyl-2-cyclohexenonea U U

2.88 +/� DHFa U U

12.35 +/� Linaloola U

23.75 �/+ 4-Methyl phenol ( p-cresol)b U U

1 +/� Isopreneb U

7.96 +/� ND U U
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methanethiol, dimethyl trisulphide, methyl(methylthio)methyl

disulfide, (methylthio)methyl sulphoxide, and bis(2-sulfhy-
drylethyl)-disulfide. Two pheromones, HMH (Novotny

et al. 1999) and dehydro-exo-brevicomin (Novotny et al.

1984) were also detected. Some compounds falling into the

‘‘nondifferentiating’’ class do so because they were not recog-

nized in our analysis (they failed to meet certain criteria). For

example, HMH had a very broad peak and as a result would

not havemet our algorithm’s criteria andwas eliminated from

further analysis. Thus, we emphasize that some compounds,
identified here as nondifferentiating, have the potential to be

biomarkers with a different analytical approach.

Visualization of the overall representation of individual

urine samples

To obtain an independent visualization of the overall repre-

sentation of individual urine samples in their respective clas-

ses, general clustering trends, and outliers among the

observations the local peak tables were subjected to PCA
(Brereton 2003, 2007) after preprocessing as discussed above.

Figure 1 depicts PC scores plots, defined by the components

of the PCA results, for the age, stress, diet, and diurnal

rhythm studies in 2D space (PC2 vs. PC1). PCA projection

demonstrates clear statistical distinctness between the 2 age

groups (4 weeks vs. 8+ weeks). Further separation between 8

weeks and older groups is less clear and not illustrated. Good

statistical separation in the PCA plots is demonstrated be-
tween the 2 classes in the conditions stressed versus control

and altered diet versus control. We observe poor separation

between the AM and PM classes using the first 2 PCs, how-

ever, this may be due to the nature of collection that was sep-

arated by 6 h rather than timed to be exactly at light and dark
phases. Separation between AM and PM can be improved

slightly by plotting other PCs but remains poor (data not

shown).

Interrelationships between the different experimental

conditions

Many of the differential peaks identified in the modeling

studies for individual comparisons, including some of the

chemically identified VOCs, are shared across multiple con-

ditions. Of the 49 compounds identified by MS from the

high-ranking biomarker list in each condition, 19 (39%) were

shared with at least one additional study. These higher rank-

ing biomarkers have a greater tendency to show up in mul-
tiple comparisons. These biomarkers could arise because

they are more stable and consistent within and between ani-

mals or alternatively reflect a common set of underlying bio-

chemical and genetic pathways that are selectively and

differentially modulated under the different situations.

Discussion

We have identified a large number of compounds in inbred

male mouse urine, identified as peaks in GC/MS, that display

a signature of variations in maturation state-, environmen-

tal-, and physiological-modulated patterns. Up to 39% of

these compounds may be shared between the different
conditions. The identity of the highest ranking biomarkers

was determined. Using predictive modeling methods, we

demonstrate strong group-related patterns of VOCs.

Table 3 Continued

RT (min) Sign Compound
name

Monte Carlo 99%
empirical significance

Iterative reformulation of
training set (70% threshold)

25.04 �/+ N-Phenyl formamidea U

6.82 �/+ ND U

Diurnal rhythms
(AM/PM)

15.1 �/+ 4,4,5-Trimethyl-2-cyclohexenonea U U

22.2 �/+ Phenola U

2.43 +/� 2,3-Pentanedionea,d U U

16.21 �/+ Benzyl methyl ketonea U

20.25 �/+ ND U U

14.58 +/� Acetophenoneb U

2.88 �/+ DHFa U U

0.98 +/� Trimethylaminea U

10.41 +/� ND U

ND, identification not determined; �/+ or +/� indicates abundance relationship.
aTentative chemical identification from MS.
bIdentified using chemical standard.
cCoeluting with methyl butyric acid.
dCoeluting with 4-ethyl phenol.
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Consistent with previous work, it is the characteristic groups

of compounds that vary significantly that define these signa-

tures rather than unique individual compounds (Singer et al.
1997; Willse et al. 2005). Our data support the hypothesis

that differences in VOCs are sufficient to make robust pre-

dictions regarding the state of individuals within a popula-

tion. It is interesting to speculate that we may have identified

selective changes in small groups of chemicals that mice use

to communicate variations in their natural experience to

other animals.

VOC correlations in other studies

Some of the chemicals identified in this study were identified

previously in specific individual conditions. The compound

SBT that was shown to be elevated in older males was pre-
viously shown to be associated with age and was found in

complex with the major urinary proteins (MUPs). (Osada

et al. 2008). The upregulation of specific compounds with

maturation may reflect the sexual maturation and increase

sex-steroids that occur between 4½ and 6 weeks of age.

For example, SBT and IPT (Table 3) that were elevated
in older males are among those compounds upregulated

or proposed to be upregulated by sex-steroids (Liebich

et al. 1977; Novotny et al. 1984, 1990). Beta-farnesene ap-

peared more abundant in older males in our analysis, al-

though it was not one of the top 20 ranking biomarkers

and was elevated in dominant male mouse urine (Novotny

et al. 1990). We determined that the differential VOC, di-

methyl disulphide, is present at higher levels in young males,
consistent with an association with behavioral subordinance

and upregulation in subordinate males (Keegans et al. 1993).

In a different condition, we observed increased levels of 2-

heptanone correlated with increased stress. Rodents that

have been adrenalectomized (the surgical removal of one

or both adrenal glands) and fail to induce/elicit classic hor-

monal stress responses contain lower levels of these com-

pounds in urine (Novotny et al. 1986). Gutiérrez-Garcı́a

Figure 1 Graphs of the scores of the first 2 principal components of the preprocessed peak tables. (A) Maturation state comparison, 4 weeks versus 8+
weeks; (B) stress comparison, restraint stressed versus nonstressed control; (C) diet comparison, high fat (HF) diet versus control (HF C) diet; and (D) diurnal
rhythm comparison, AM versus PM PC, principal components.

468 M.L. Schaefer et al.

 by guest on O
ctober 3, 2012

http://chem
se.oxfordjournals.org/

D
ow

nloaded from
 

http://chemse.oxfordjournals.org/


et al. (Gutiérrez-Garcı́a et al. 2006, 2007) identified 2-hepta-

none and linalyl propionate, an ester of linalool that we iden-

tified as a stress biomarker (2-heptanone is increased and

linalool is depressed following restraint stress), as associated

with stress. Of the 9 biomarkers found in the diurnal rhythm
comparison, 4 were in common with the stress condition

(DHF 2.88 min, trimethylamine, and 2 chemicals not iden-

tified [ND 20.35 and 10.41 min]). Corticosterone, released

from the adrenal glands during stress, is also released during

natural diurnal rhythms. Peak concentrations occur at the

beginning of the dark phase (activity period), with a decrease

over the remainder of the 24-h period (Velasco et al. 1993). In

our condition, the AM collection was made shortly after the
light phase began, and the PM collection occurred just before

the active dark phase or 6 h apart from the light phase. Thus,

we would expect corticosterone levels to be lower in the PM

collection (and more similar to the control nonstressed mice)

than in the samples. The abundance intensity relationships

for all the compounds are correlated between these 2 com-

parisons (when the abundance of these compounds is high in

the AM, it is high in the stressed animals).

Source of VOCs

Some of the prominent VOCs identified in this study, includ-
ing the previously identified male pheromones SBT, exo-

brevicomin, and 2-heptanone are differentially bound and

stabilized by MUPs (Humphries et al. 1999; Sharrow

et al. 2002; Novotny 2003). The presence of these VOCs

in multiple comparisons suggests that the stability of the

VOC may contribute to its identification as a biomarker.

Many of the compounds identified in this study can be traced

to known metabolic pathways, including the degradation of
amino acids, oxidative processes, hormone and/or steroid

triggered production, and fatty acid degradation (Charlton

and Roelofs 1991). Isoprene, a precursor of terpenes, is also

a differential biomarker in our studies consistent with a role

for the mevalonate biosynthesis pathway in VOC generation

(Sacchettini and Poulter 1997; Kuzuyama 2002). Moreover,

the elevated levels we observed for urinary isoprene in the

high-fat diet groupmay be linked specifically to cholesterolo-
genesis, as has been proposed for isoprene detected in breath

(Legato 2000; Karl et al. 2001), and may be utilized as a non-

invasive marker of blood cholesterol levels (Taucher et al.

1997; Karl et al. 2001).

Overlap of differential chemicals between studies

Why do many chemicals show up in multiple comparisons?

The preferential identification of stable compounds, a natu-

ral merging of pathways, and interdependence between the

different groups may underlie the existence of a common

group of biomarkers. The stability of some compounds
may be inherent in their structure, whereas others are stabi-

lized by protein binding. The shared biomarkers 2-heptanone

and SBT bind MUPs, making these compounds more stable

and permitting their release as scent marks over time (No-

votny et al. 1984; Humphries et al. 1999). Metabolic changes

shared by several conditions produce a common subset of

biomarkers because they are controlled by the same regula-

tory components. Diurnal rhythms, diet, and stress could
exhibit the same chemicals because they each involve corti-

costeroid. This simple hormone can stimulate gluconeogen-

esis to ensure an adequate fuel supply; increase mobilization

of free fatty acids, making them a more available energy

source; conserve glucose for the brain by reducing glucose

utilization in other tissues; stimulate protein catabolism to

release amino acids for use in repair, enzyme synthesis,

and energy production; act as an antiinflammatory agent;
depress immune reactions; and increase the vasoconstriction

caused by epinephrine (Munck and Naray-Fejes-Toth 1994;

Sapolsky 2000).

Urinary profiling and biomarker discovery

Functional genomics, integrative and systems biology, phar-
macogenomics, and biomarker discovery for disease progno-

ses, diagnoses, and therapy monitoring have all focused on

metabolomics because many diseases are indeed a result of

metabolic disorders (Hollywood et al. 2006). We identified

biomarkers that may have the potential to lead to a better

understanding of disease processes as specificmetabolic path-

ways including degradation pathways of amino acids, oxida-

tive pathways, production triggered by hormone and/or
steroid levels (e.g., corticosteroids), and fatty acid metabo-

lism have been highlighted as being important (Charlton

and Roelofs 1991). These biomarkers, their specific meta-

bolic pathways of origin, and an understanding of the inter-

dependence between different pathways may serve as

a hypothesis starting point for therapeutic intervention

and drug discovery. Beyond disease, these data provide a dis-

crete subset of compounds sufficient to predict several pa-
rameters of natural variations influencing mouse urinary

profiles that can be further examined under additional con-

ditions of environmental exposure. It is important to note

that these studies were performed in a single inbred strain

(C57BL/6J-H-2b), and further work in other strains or out-

bred strains will need to be done to confirm the predictive

nature of these compounds for mice in general. However,

our work highlights the potential for urinary profiling to pro-
vide a robust signature of the state of individuals.

Mice provide an ideal framework to better understand the

mechanisms that produce and modulate VOCs in bodily

emissions. In this study, we demonstrate that volatile signals

are emitted by inbred mice that provide information on

maturity, diet, stress, and diurnal rhythms; each important

individual attributes with possible evolutionary influence.

Our results also identify at least some of the components that
create novel groups of hitherto unrecognized differential

chemicals along with previously identified compounds that

provide these robust signatures. We also showed a strong
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endocrine (especially sex-steroid effects) influence on urinary

profiles. Additionally, components that appear repeatedly

across comparisons are known to bind specific classes of car-

rier proteins, suggesting a critical mechanistic role for spe-

cific carrier proteins in determining unique urinary
profiles. Finally, the presence of these shared chemicals that

communicate individual status across multiple conditions

suggests that a relatively restricted collection of chemicals

may be used for biological communication.

Supplementary material

Supplementary material can be found at http://www.chemse

.oxfordjournals.org/.
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